The effects of quantum dot coverage in InAs/(In)GaAs nanostructures for long wavelength emission

نویسندگان

  • G. Trevisi
  • L. Seravalli
  • P. Frigeri
  • Mirko Prezioso
  • J. C. Rimada
  • E. Gombia
  • R. Mosca
  • L. Nasi
  • C. Bocchi
  • S. Franchi
چکیده

We present a study on the effects of quantum dot coverage on the properties of InAs dots embedded in GaAs and in metamorphic In0.15Ga0.85As confining layers grown by molecular beam epitaxy on GaAs substrates. We show that redshifted emission wavelengths exceeding 1.3 μm at room temperature were obtained by the combined use of InGaAs confining layers and high quantum dot coverage. The use of high InAs coverage, however, leads to detrimental effects on the optical and electrical properties of the structures. We relate such behaviour to the formation of extended structural defects originating from relaxed large-sized quantum dots that nucleate in accordance to thermodynamic equilibrium theories predicting the quantum dot ripening. The effect of the reduced lattice-mismatch of InGaAs metamorphic layers on the quantum dot ripening is discussed in comparison with the InAs/GaAs system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelength and polarization variations of InAs/GaAs quantum dots emission at liquid Helium temperature via microphotoluminescence spectroscopy

In this paper, we investigate variation of the wavelength, intensity and polarization of the self-assembled InAs/GaAs quantum dots emission by microphotoluminescence spectroscopy at the liquid helium temperature. The microcavity wafer sample is grown by molecular beam epitaxy (MBE) and chemically etched into the micropillar structure (with elliptical cross section - long and short axis 2µm×1.5µ...

متن کامل

Wavelength and polarization variations of InAs/GaAs quantum dots emission at liquid Helium temperature via microphotoluminescence spectroscopy

In this paper, we investigate variation of the wavelength, intensity and polarization of the self-assembled InAs/GaAs quantum dots emission by microphotoluminescence spectroscopy at the liquid helium temperature. The microcavity wafer sample is grown by molecular beam epitaxy (MBE) and chemically etched into the micropillar structure (with elliptical cross section - long and short axis 2µm×1.5µ...

متن کامل

Long wavelength InAs self-assembled quantum dots embedded in GaNAs strain-compensating layers

We investigated the effect of GaNAs strain-compensating layers (SCLs) on the properties of InAs self-assembled quantum dots (QDs) grown on GaAs (0 0 1) substrates. The GaNAs material can be used as SCL thereby minimizing the net strain, and thus is advantageous for multi-stacking of InAs QDs structures and achieving long wavelength emission. The emission wavelength of InAs QDs can be tuned by c...

متن کامل

Twin superlattice-induced large surface recombination velocity in GaAs nanostructures

Photovoltaic effects on Franz–Keldysh oscillations in photoreflectance spectra: Application to determination of surface Fermi level and surface recombination velocity in undoped Ga As ∕ n-type GaAs epitaxial layer structures Detection of surface states in GaAs and InP by thermally stimulated exoelectron emission spectroscopy Temperature dependence of photoluminescence spectra in InAs/GaAs quant...

متن کامل

Gain optimization of the optical waveguide based on the quantum box core/shell structure

In order to implement an integrated optical quantum circuit, designing waveguides based on the quantum box is of prime importance. To do this we have investigated optical waveguide both with and without optical pumping. The rate of absorption and emission using an array of AlGaAs/GaAs quantum box core/shell structure in the optical waveguide with various pumping intensities has computed. By con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microelectronics Journal

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2009